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A B S T R A C T

Ba1-xSrxZnSi3O8 (x=0.2–1.0) microwave dielectric ceramics were synthesized using the solid-state method at
the temperature from 1087 °C to 1150 °C for 3 h. All compositions showed a single phase for Ba1-xSrxZnSi3O8

when x increased from 0.2 to 1.0, and a phase transition from monoclinic to triclinic structure occurred between
0.8 and 1.0. The relative permittivity of Ba1-xSrxZnSi3O8 ceramics decreased from 6.57 to 6.12 when the Ba2+

ions substituted by Sr2+ ions. However, the quality factor initially decreased from 34,735 GHz (x=0.2) to
28,986 GHz (x=0.4) and subsequently increased monotonously. The variation in the temperature coefficient of
resonant frequency showed an opposite, slightly changing trend compared with that of the quality factor. A
novel single-phase SrZnSi3O8, which possesses good microwave dielectric properties of εr = 6.12,
Q×f=78,064 GHz, and τf=−33.2 ppm/°C, was obtained for the first time at the sintering temperature of
1150 °C.

1. Introduction

With the expanding operating frequency ranges of microwave
wireless communication, wireless communication is on the verge of
entering its fifth generation. High frequency is required for ultrahigh-
speed local area networks, electronic toll systems, and car anti-collision
systems based on the intelligent transport systems [1,2]. Low-permit-
tivity (εr < 15) microwave dielectric ceramics can be used as high-
frequency substrates, dielectric antennae, high-accuracy capacitors, and
millimeter-wave components, such as resonators and filters [3]. Thus,
high-performance microwave dielectric ceramics with low permittivity
is expected to attract considerable attention. For millimeter-wave
wireless communication, microwave dielectric ceramics must present a
low dielectric constant (εr) to reduce the transmission attenuation and
the cross-coupling effect, a high-quality factor (Q×f) to achieve ex-
cellent frequency selectivity, and a near-zero temperature coefficient of
resonant frequency (τf) to ensure the stability of the transmitted fre-
quency [4,5].

Silicates exhibit several interesting characteristics, such as ferroe-
lectricity in Bi2SiO5 and BaZnSiO4 [6,7], unique thermal expansion
coefficient in Ba1-xSrxZn2Si2O7 [8], and microwave dielectric properties

in Mg2Al4Si5O18 [9]. These interesting features are related to the ma-
terials’ complex crystal structure consisting [SiO4] tetrahedrons and
other polyhedral. In general, silicates present a low permittivity value
because of the Si–O bond in [SiO4] tetrahedron, which contains 45%
ionic bond and 55% covalent bond; the covalent bond reduces the re-
lative permittivity because of the decrease of rattling effect [1]. In
addition, numerous kinds of silicates, such as Zn2SiO4,
(Sr1-xAx)2(Zn1-xBx)Si2O7 (A = Ca, Ba and B = Co, Mg, Mn, Ni) and
CaAl2Si2O8 [10–12], have been explored. All of these silicates present a
low permittivity value and a high quality factor, rendering the materials
as good candidates for millimeter-wave devices.

In recent years, there have been several works focusing on feldspar-
based microwave dielectric ceramics, which comprise plagioclase-
feldspar-type and alkali-feldspar-type structures. The chemical formulas
are A[B2C2]O8 (A= Ca, Sr, Ba; B = Al, Ga; C = Si, Ge) and A[BC3]O8

(A =K, Na; B= Al, Ga; C= Si, Ge), respectively [12–16]. The feldspar
crystal structure is composed of a three-dimensional framework of [Al/
GaO4] or [Si/GeO4] tetrahedral. The charge balance due to the sub-
stitution of Al3+/Ga3+ for Si4+/Ge4+ is maintained by the addition of
an interstitial alkali or alkali-earth ion [13]. Except for the most
common feldspar, that is, zinc-feldspar, is rarely noticed. In 1970,
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Segnit et al. [17] synthesized the BaZnSi3O8 ceramics by the solid-state
reaction method. Heuer et al. [18] reported the crystal structure of
single-crystal CaZnSi3O8 prepared by hydrothermal method in 1998.
Fehr et al. [19] called CaZnSi3O8 as zinc-feldspar and predicted the
existence of SrZnSi3O8. In our previous work, BaZnSi3O8 ceramics was
synthesized and its microwave dielectric properties were reported [3].
Thus so far, SrZnSi3O8 has not yet been synthesized, and its microwave
dielectric properties have not been reported previously. In this work,
Sr2+ ions were used as substitute for Ba2+ ions, and Ba1-xSrxZnSi3O8

(x=0.2-0.8) solid solution was prepared through the solid-state reac-
tion method. Besides, the phase composition, microstructure, and mi-
crowave dielectric properties of Ba1-xSrxZnSi3O8 (x=0.2–1.0) ceramics
were investigated.

2. Experimental procedure

The Ba1-xSrxZnSi3O8 (x=0.2–1.0) ceramics were prepared by
conventional solid-state method using reagent grade BaCO3 (99.8%),
SrCO3 (99.8%), ZnO (99.5%), SiO2 (99.5%) powder as raw materials.
According to desired stoichiometry, the raw materials were weighed to
ball milled in a polyethylene jar for 12 h using ZrO2 balls with deio-
nized water. After drying at 85 °C, the mixtures were calcined in air at
1000 °C for 3 h with a heat rate of 5 °C/min. And then the powders were
uniaxially pressed into samples with dimensions of 12mm in diameter
and approximately 6mm in height under a pressure of 150MPa. The
samples were sintered in the temperature range of 1087 °C–1150 °C for
3 h at a heating rate of 5 °C/min, and then they were naturally cooled in
the furnace after being cooled to 1000 °C at a rate of 1 °C/min.

The apparent density of the sintered samples was measured by
Archimedes’ method. The relative density ρrel was obtained by as for-
mula follows [20]:

=ρ
ρ
ρrel
app

the (1)

where ρapp and ρthe were the apparent density and theoretical densities,
respectively.

The X-ray diffraction (XRD) data were obtained using the XRD-7000
X-ray diffractometer (Shimadzu, Kyoto, Japan) with CuKα radiation.
The microstructure and elemental mapping of the Ba1-xSrxZnSi3O8

samples were observed by scanning electron microscope (Sirion 200,
Netherlands) with an energy-dispersive X-ray spectrometer (JSM-
6490LV, Japan). Grain size distributions were obtained using the Image
J software. The values of εr and the unloaded Q×f value were measured
within 12–14 GHz in the TE011 mode by Hakki and Coleman method
[21] using a network analyzer (Agilent E8362B, Agilent Technologies,
USA) and parallel silver boards. The τf value in the temperature range of
30–80 °C was calculated by Eq. (2):
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where f(T1) and f(T0) represented the resonant frequency at T1 (80 °C)
and T0 (30 °C), respectively.

3. Results and discussion

Fig. 1 (a) shows the XRD patterns of Ba1-xSrxZnSi3O8 (x=0.2–1.0)
ceramics sintered at their optimum temperature. The diffraction peaks
that corresponded to Ba1-xSrxZnSi3O8 (x=0.2-0.8) are indexed to
BaZnSi3O8 (PDF#23-0841), indicating that Ba1-xSrxZnSi3O8 forms a
solid solution with monoclinic structure (P21/m space group). How-
ever, for x=1.0, SrZnSi3O8 is not assigned a PDF card. The lattice
parameters of BaZnSi3O8 and SrZnSi3O8 were extracted from XRD data
using the least-squares method. All the peaks are indexed accordingly,
and the crystal structure information is given in the supplemental file.

Fig. 1 (b) presents the enlargement of the main diffraction peaks

between 26.0° and 28.5°. Resulting from the substitution of Sr2+ ions
for Ba2+ ions, the peaks shifts to high angles. This phenomenon is ex-
pected because the ionic radius of Sr2+ is 1.31 Å (CN=9), which is
smaller than that of Ba2+ ions (1.47 Å; CN=9) [22]. Moreover, the
two main diffraction peaks at approximately 26.5° approaches each
other when x increases from 0.2 to 1.0. However, another diffraction
peak appears on the left of the main diffraction peak when x=1.0. This
phenomenon is caused by the phase transition from the P21/m space
group (x=0.2-0.8) to the P-1 space group (x=1.0), as verified from
the indexed results in the supplemental file. Meanwhile, the intensity of
the diffraction peaks gradually increase as x increased, corresponding
to the increase in crystallinity in the matrix ceramics [9].

Fig. 2 (a1)-(e1) present the microstructure of thermally etched
Ba1-xSrxZnSi3O8 (x=0.2–1.0) ceramics sintered at 1087 °C to 1150 °C
for 3 h. All of the compositions exhibit a dense microstructure, and
small pores can be observed on the surface. Fig. 2 (a2)-(e2) and (a3)-
(e3) show the backscattered electron (BSE) images and mapping of
Ba1-xSrxZnSi3O8 (x=0.2–1.0) ceramics sintered at 1087 °C to 1150 °C
for 3 h. No distinct grain can be observed (Fig. 2 (a2)-(e2)), and the
elements of Ba1-xSrxZnSi3O8 (x=0.2–1.0) ceramics (Fig. 2 (a3)-(e3))
are evenly distributed on the surface, indicating that single-phase
Ba1-xSrxZnSi3O8 (x=0.2–1.0) is formed. The average grain sizes esti-
mated from Fig. 2 (a4)-(e4) are approximately 0.616, 0.723, 0.796,
0.874 and 1.098 μm, corresponding to x=0.2-1.0. The increase in
average grain size corresponds to the enhancement of the main dif-
fraction peaks in Fig. 1, indicating an increasement in crystallinity [9].

Fig. 3 shows the apparent densities and relative densities of
Ba1-xSrxZnSi3O8 (x=0.2–1.0) ceramics sintered at 1087 °C to 1150 °C
for 3 h. The apparent densities of Ba1-xSrxZnSi3O8 (x=0.2–1.0) cera-
mics decreases monotonously from 3.55 g/cm3 to 3.30 g/cm3 because
the atomic weight of Sr is smaller than that of Ba. The relative densities
of all compositions are higher than 95%, and the effect of pores on the
microwave dielectric properties is small [23].

Fig. 4 (a) shows the microwave dielectric properties of
Ba1-xSrxZnSi3O8 (x=0.2–1.0) ceramics sintered at 1087 °C to 1150 °C
for 3 h. The influence of porosity on εr is eliminated by the following
equation [24]:

= +−ε ε P(1 1.5 )r corr r (3)

where P is the porosity and can be calculated by the formula as follows:

Fig. 1. (a) XRD powder diffraction patterns of Ba1-xSrxZnSi3O8 (x=0.2–1.0)
ceramics sintered at 1087 °C–1150 °C for 3 h. (b) Enlargement of the main
diffraction peaks between 26.0° and 28.5°.
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= −P ρ1 rel (4)

The total ionic polarizability (αD
T) of Ba1-xSrxZnSi3O8 (x=0.2–1.0)

can be calculated by the additive rule [25,26]:

= − + + + +
+ + + + −α x α Ba xα Sr α Zn α Si α O(1 ) ( ) ( ) ( ) 3 ( ) 8 ( )D

T 2 2 2 4 2

(5)

where α(Ba2+), α(Sr2+), α(Zn2+), α(Si4+) and α(O2−) are the ionic
polarizabilities of Ba2+, Sr2+, Zn2+, Si4+, and O2−, respectively.

The relative permittivity (εr), porosity-corrected relative permit-
tivity (εr-corr) and ionic polarizability (αtheo) of Ba1-xSrxZnSi3O8 cera-
mics decreases monotonously when x increases from 0.2 to 1.0, thereby
indicating that the ionic polarizability of Ba1-xSrxZnSi3O8 plays a
dominant role in controlling the relative permittivity [26,27]. The Q×f
value initially decreases from 34,736 GHz for x=0.2 to 28,986 GHz for
x=0.4, and subsequently increases to 78,064 GHz for x=1.0 (Fig. 4
(b)). Variation of Q×f values of Ba1-xSrxZnSi3O8 is similar to that of

(Sr1-xAx)2ZnSi2O7 (A = Ca, Ba) reported by M.T. Sebastian in 2010
[11]. They attributed this phenomenon to the difference in radius of the
A-site cations, which leads to synergistic effects, such as the orderly

Fig. 2. (a1)-(e1) SEM images, (a2)-(e2) BSE images, (a3)-(e3) Mapping and (a4)-(e4) Grain size distribution of thermally etched Ba1-xSrxZnSi3O8 (x=0.2–1.0)
ceramics sintered at 1087 °C–1150 °C for 3 h.

Fig. 3. Apparent densities and relative densities of Ba1-xSrxZnSi3O8

(x=0.2–1.0) ceramics sintered at 1087 °C–1150 °C for 3 h.

Fig. 4. (a) Relative permittivity (εr) and dielectric polarizability (αtheo) (b) Q×f
value and τf value of Ba1-xSrxZnSi3O8 (x=0.2–1.0) ceramics sintered at
1087 °C–1150 °C for 3 h.
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arrangement of the cations. Ba1-xSrxAl2Si2O8 and Ba1-xCaxAl2Si2O8 solid
solutions belong to the typical feldspar-type crystal structure, which
have a similar crystal structure to Ba1-xSrxZnSi3O8. And the variation of
Q×f for Ba1-xSrxAl2Si2O8, Ba1-xCaxAl2Si2O8 and Ba1-xSrxZnSi3O8 solid
solutions have the same trend [12,15]. Feldspar crystal structure is
composed of a three-dimensional framework of [Al/GaO4] or [Si/GeO4]
tetrahedral. It is easy to form a short-ordered arrangement Si and Al and
long-ordered arrangement can be obtained after a long period of an-
nealing. However, this Si:Al ordering cannot be detected by XRD due to
the small difference in the X-ray scattering efficiencies of Al and Si. In
Ba1-xSrxZnSi3O8 solid solution, the three-dimensional framework is
composed of [ZnO4] and [SiO4] tetrahedral. It is more likely to form a
short-ordered arrangement between Zn2+ and Si4+ due to their large
difference of ionic radius and valance state. Krzmanc attributes the
variation of Q×f for Ba1-xSrxAl2Si2O8 and Ba1-xCaxAl2Si2O8 solid solu-
tions to the change of cation ordering, which may also apply to
Ba1-xSrxZnSi3O8 solid solution. The variation trend of τf values and Q×f
values is the opposite. The τf values vary slightly between −23.9 ppm/
°C and −33.2 ppm/°C in the entire range of x. The most excellent mi-
crowave dielectric properties (namely, εr = 6.12, Q×f=78,064 GHz,
and τf=−33.2 ppm/°C) are obtained when x=1.0 (SrZnSi3O8).

4. Conclusions

Low-permittivity Ba1-xSrxZnSi3O8 (x=0.2–1.0) low-permittivity
microwave dielectric ceramics have been synthesized using the con-
ventional solid-state method. XRD patterns, BSE images and mapping
show that Ba1-xSrxZnSi3O8 solid solutions with monoclinic structure
(P21/m space group) are formed when x increases from 0.2 to 0.8.
Importantly, a novel single-phase SrZnSi3O8 ceramic with triclinic
structure (P-1 space group) is obtained for the first time. The relative
permittivity of Ba1-xSrxZnSi3O8 is dominated by ionic polarizability,
and the εr decreases linearly from 6.57 to 6.12 when the Ba2+ ions are
substituted by Sr2+ ions. However, the quality factor initially decreases
from 34,735 GHz (x=0.2) to 28,986 GHz (x=0.4) and subsequently
increases monotonously after a certain point. The τf values varies
slightly between−23.9 ppm/°C and−33.2 ppm/°C in the total x range.
The most excellent microwave dielectric properties (namely, εr = 6.12,
Q×f=78,064 GHz, and τf=−33.2 ppm/°C) are obtained when
x=1.0 (SrZnSi3O8).
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